LDBIO TOXO II IgG CC0459

CONFERMA

Diagnostica in vitro Immunoblot test Tecnica Semiautomatica / manuale

#TOXO II 24G: 24 test

#TOXO II 12G: 12 test

#TOXO II 96G: 96 test

ISTRUZIONI PER L'USO

Per ulteriori informazioni e istruzioni per l'uso nella tua lingua, visita il nostro sito Web www.ldbiodiagnostics.com

DESTINAZIONE D'USO

LDBIO-TOXO II IgG è un monouso test qualitativo per la diagnosi delle IgG sieriche con analisi Immunoblot della toxoplasmosi intesa come analisi di conferma dei risultati positivi o dubbi ottenuti con le classiche analisi di screening. Il Test può essere eseguito su siero, liquido cerebrospinale (CSF) o umor acqueo.

PRINCIPIO DEL TEST

La tecnica Western Blot

Gli antigeni della *Toxoplasma gondii*, dopo l'isolamento mediante elettroforesi, con l'esecuzione dell'elettroblot si legano alla superficie della membrana di nitrocellulosa (denominata transfer) suddivisi in 24 strisce numerate da 1 a 24.

Principio del test

Ciascun campione di siero (o CSF/umor acqueo) da analizzare viene incubato separatamente con una striscia. Gli anticorpi specifici, potenzialmente presenti nel campione, si legano in modo selettivo agli antigeni. Le IgG umane coniugate a fosfatasi alcalina si legano agli anticorpi. Gli immunocomplessi formati reagiscono con il substrato. Gli antigeni riconosciuti dagli anticorpi specifici di classe IgG presenti nel campione appaiono come strisce trasversali di colore viola.

REAGENTI FORNITI CON IL KIT

Default: conifezione da 24 test (#TOXO II 24G)

Corsivo: confezione da 12 test (#TOXO II 12G) - Grassetto: Confezione da 96 test (#TOXO II 96G).

Cod.	Q.tà	Descrizione	Composizione	
R1	1	Confezione da 24 (12, 4x24) STRISCE: standard pretagliate + colorate. (Ogni cartella e ogni adesivo sono identificati da un numero di serie univoco)	Nitrocellulosa sensibilizzata. Peso molecolare colorati (kDa): blu: 250, blu: 150, blu: 100, rosa: 75, blu: 50, verde: 37, rosa: 25, blu: 20, blu: 15.	
R2	1	Fiala da 30 (<i>30</i> , 125) ml di BUFFER DILUENTE SIERI (pronto all'uso, soluzione rosa).	Buffer + tensioattivo.	
R3	1	Fiala/e da 30 (<i>30</i> , 2x60) ml di CONIUGATO ANTI IgG (pronto all'uso, soluzione blu).	Buffer + sieri policlonali di capra con anti-IgG umane coniugati con fosfatasi alcalina + NaN3 (<0,1%) + stabilizzatori.	
R5	1	Fiala da 30 (<i>30,</i> 125) ml di SUBSTRATO (pronto all'uso, fiala marrone opaca). Buffer + NBT + BCIP + stabilizzat		
R6	1	Fiala da 60 (60, 250) ml di 10 SOLUZIONE DI LAVAGGIO CONCENTRATA (da diluire in 10 parti di acqua distillata; soluzione incolore).	GIO Buffer + tensioattivo.	
R10	1	Provetta da 100 (100, 2x100) μl di SIERO DI CONTROLLO POSITIVO (pronto all'uso; cappuccio rosso). Buffer + serie di sieri umani po sierologia Toxoplasma + NaN3 + stabilizzatori.		

R1: La lettera prima di ogni numero di striscia è specifica per il parametro.

R2, R3, R5 e R6 sono uguali per tutti i kit e hanno un unico numero di lotto che dipende esclusivamente dalla data di produzione. Si raccomanda di eseguire sequenze a parametri multipli (vedere la gamma immunoblot LDBIO) per limitare il numero di fiale aperte e assicurare un miglior controllo qualità.

R10 è calibrato in immunoblot secondo un lotto di riferimento ed è dedicato esclusivamente a questa tecnica.

R3, R10 (NaN3): EUH 032 - A contatto con acidi libera gas molto tossici.

EUH 210 Scheda dati di sicurezza disponibile su richiesta e sul nostro sito web www.ldbiodiagnostics.com.

ALTRO MATERIALE RICHIESTO NON INCLUSO NELLA FORNITURA

- Vassoi di incubazione multi-canale in polipropilene per miniblot (#WBPP-08 o equivalenti).
- Piattaforma oscillante per immunoblot, sistema di aspirazione per liquidi (le vaschette #WBPP-08 da noi fornite possono essere svuotate semplicemente capovolgendole).
- Provette e materiale per il prelievo dei campioni, cilindri graduati, contenitori adatti. Pipette automatiche, micropipette e punte usa e getta (10 μl, 25μl, 1,2 ml e 2 ml di volume).
- Acqua distillata o deionizzata. Carta assorbente (es. carta da filtro Whatman), nastro adesivo trasparente.
- Guanti, pinzette per maneggiare le strisce, cutter o bisturi, righello piatto trasparente.

<u>Nota</u>: I nostri reagenti possono essere utilizzati in un preparatore immunoblot automatico. **Prestare attenzione** alle possibili contaminazioni chimiche dei nostri reagenti se il preparatore viene anche usato con reagenti di altro produttore (per es. è nota la contaminazione da TWEEN 20), e alle contaminazioni batteriche. Tenere scorte di fiale per il preparatore. Dopo l'uso, non riporre i residui di reagente nelle fiale originali.

CONSERVAZIONE E STABILITÀ

Conservare tra 2 e 8 °C. I reagenti contenuti nel kit sono stabili sino alla data di scadenza indicata sulla scatola esterna e sulle etichette delle fiale. Non utilizzare reagenti contaminati o torbidi. Il buffer di detergente diluito a 1/10 è stabile per due mesi a temperature comprese fra +2 e +8 °C e per una settimana a temperatura ambiente.

PRECAUZIONI D'USO

Sicurezza

- Solamente per uso *in vitro*. Solo per uso professionale. Solo per personale tecnicamente preparato. Maneggiare secondo le Buone pratiche di laboratorio (BPL) e considerare ogni reagente e ogni campione come potenzialmente tossici e/o infettivi.
- Indossare il camice, guanti e occhiali da laboratorio; non bere, mangiare o fumare all'interno del laboratorio. Non mettere in bocca le pipette.
- Il controllo positivo è un siero di origine umana che è stato inattivato per i virus HIV 1 e 2, dell'epatite B e dell'epatite C. Deve comunque essere maneggiato come un prodotto potenzialmente infettivo.
- Il substrato contiene una miscela di NBT e BCIP, tossica al tatto (per pelle e mucose) e per inalazione.
- I reagenti contengono sodio azide, che può generare sali metallici esplosivi a contatto con piombo e rame. Sciacquare ogni residuo con acqua.
- Smaltire i materiali di scarto (campionature, beccucci, provette, liquido detergente, reagente usato...) secondo le buone pratiche previste dal settore e dalle normative nazionali attualmente in vigore.
- Ogni incidente grave deve essere oggetto di una dichiarazione al fabbricante e all'autorità competente.

Precauzioni

- Leggere e interpretare i risultati alla luce bianca diretta.
- È preferibile utilizzare tutti i reagenti dello stesso lotto. Se si utilizzano lotti diversi, assicurarne la tracciabilità
- Usare le strisce in ordine numerico. Non mescolare strisce provenienti da lotti con numeri di serie diversi; usare le etichette in sequenza progressiva. Programmare un piano di distribuzione specifico prima di iniziare il test
- Non toccare le strisce con le dita; usare le pinzette.

- I reagenti devono essere miscelati bene prima dell'uso, soprattutto il buffer di detergente concentrato.
- Chiudere le fiale dopo l'uso; non usare i reagenti se accidentalmente contaminati da un'altra sostanza. Non
 usare il reagente contenuto in una fiala che presenta segni di perdite. Non usare la soluzione se appare
 torbida o sedimentata.
- Per le pipette usare solamente punte usa e getta. Evitare qualunque contaminazione tra i vari canali. Verificare l'eventuale formazione di schiuma o bolle all'interno delle punte delle pipette (contaminazione batterica delle fiale di reagente).
- <u>I vassoi di incubazione devono essere lavati solamente con acqua pulita seguita da acqua distillata (non usare mai detergenti o candeggianti).</u>
- L'omissione di un campione o la distribuzione di volume inadeguato può rendere negativo o positivo il risultato del test, indipendentemente dalle condizioni specifiche.

RACCOLTA DEI CAMPIONI

Raccogliere i campioni in modo asettico all'interno di provette asciutte. La quantità minima richiesta è di 10 µl di siero, umor acqueo o CSF. Nel caso di umor acqueo o CSF, usare 25 µl aumenta la sensibilità del test.

Conservare i campioni a temperatura di 2-8 °C fino al momento dell'utilizzo. Nel caso sia necessaria la refrigerazione più di una settimana, congelare i campioni a temperatura di -20 ± 5 °C. Non utilizzare i campioni contaminati. Evitare di congelare e scongelare i campioni più volte.

Sebbene nessuna particolare reazione incrociata sia stata osservata con il siero emolitico, itterico o lipidico, si raccomanda di interpretare i risultati di tali campioni con cura.

PREPARAZIONE DEI REAGENTI

Soluzione di Lavaggio: Per 4 test: in una bottiglia pulita, diluire 10 ml di detergente concentrato 10X **(R6)** in 90 ml di acqua distillata o deionizzata. Fare attenzione a mescolare bene il tampone diluito.

COME SI ESEGUE IL TEST

N.B.: Si raccomanda di seguire sequenze a parametri multipli (vedere la gamma immunoblot LDBIO) per limitare il numero di fiale aperte e assicurare un miglior controllo qualità.

1. Programmare un piano di distribuzione dei campioni e del controllo positivo a C+ (R10).

Solamente usando questo controllo il test è tecnicamente valido ed è possibile identificare, <u>per un determinato numero di serie</u>, le strisce generate. <u>Una striscia C+ non può essere utilizzata per interpretare i risultati delle strisce generate da un diverso numero di serie</u>.

- 2. Tagliare il numero richiesto di strisce (R1) con un bisturi e un righello trasparente piatto, pulito e asciutto, tenendo la riga blu di posizionamento sulle strisce: tenere ben ferme le strisce con il righello e tagliarle lungo il lato in cui si esercita la pressione (i numeri sono leggibili attraverso il righello).
- 3. Distribuire 1,2 ml di tampone di diluizione (R2) in ciascun canale secondo il piano di distribuzione stabilito.
- 4. Far reidratare le strisce per circa 2 minuti, <u>adagiandole sul buffer</u> con il numero ben visibile in alto, dopo agitare delicatamente il vassoio e farle immergere completamente nel buffer.
- 5. Distribuire i campioni e il controllo/i positivo/i: in base al piano di distribuzione, in misura di 10 μl per canale (preferibilmente 25 μl per umor acqueo o CSP). Agitare delicatamente il vassoio dopo ogni erogazione. Posizionare il vassoio su una piattaforma oscillante. **Mettere in incubazione per 90 min** ± 5 min a 20-26 °C.
- 6. Fase di lavaggio: Eliminare il contenuto dai canali usando una pipetta Pasteur o capovolgendo il vassoio di incubazione.

Versare da 2 a 3 ml di soluzione di lavaggio in ciascun canale. Mettere in incubazione sulla piattaforma di agitazione per 3 min. Ripetere l'operazione due volte, quindi eliminare il contenuto dai canali. <u>Assicurarsi che le strisce non si capovolgano durante questi passaggi</u>.

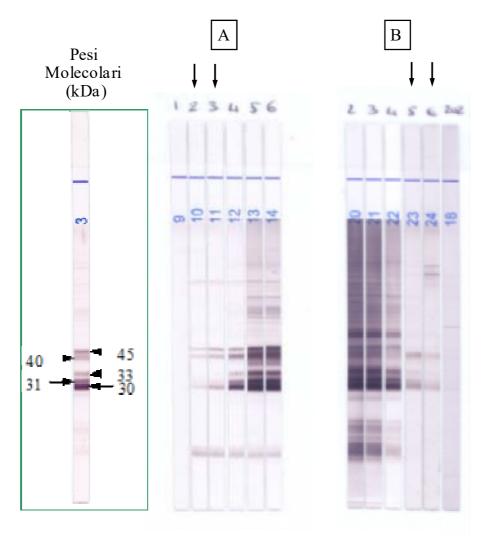
- 7. Versare 1,2 ml di coniugato anti-IgG (R3) in ciascun canale. Posizionare il vassoio sulla piattaforma oscillante. **Tenere** in incubazione per 60 min ± 5 min a 20-26 °C.
- 8. Fase di lavaggio: ripetere la fase 6.
- 9. Distribuire 1,2 ml di substrato NBT/BCIP (R5) in ciascun canale. Posizionare sulla piattaforma oscillante proteggendo dalla luce diretta. **Tenere in incubazione per 60 min** ± 5 min a 20-26 °C.

Indipendentemente dal parametro, tenere sotto controllo lo sviluppo del colore. Il processo può essere interrotto se il colore di fondo della striscia si scurisce rendendo difficoltosa la lettura (la qualità delle fasi di lavaggio influisce fortemente sulla colorazione di fondo). Ricordare che asciugando le strisce schiariscono.

- 10. Interrompere la reazione aspirando il substrato con una pipetta di Pasteur o capovolgendo la vasca di incubazione e versando 2 ml di acqua distillata nei canali. Ripetere quest'ultimo passaggio di lavaggio ancora una volta.
- 11. Asciugatura delle strisce: Con i canali ancora pieni di acqua, prendere le strisce dal lato numerato con le pinzette e depositarle, con il numero visibile, su carta da filtro Whatman. Fare asciugare all'aria. Il colore delle strisce si schiarisce naturalmente durante l'asciugatura. L'interpretazione deve essere eseguita dopo la completa asciugatura.
- 12. Conservazione: Trasferire le strisce su un foglio di carta, che servirà per archiviarle. Allineare le righe di posizionamento. Tenendole ferme con il righello piatto, fermare le strisce sulla sommità con del nastro adesivo trasparente.

Per una buona interpretazione, le strisce devono essere ordinate per etichetta adesiva in sequenza numerica, distanziate tra loro alcuni millimetri al massimo. Non è affidabile effettuare il confronto di strisce molto distanziate tra loro (es. la striscia n. 2 con la n. 15). È pericoloso (falsi risultati) effettuare il confronto di strisce provenienti da confezioni diverse (strisce con numeri di serie diversi).

CONTROLLO QUALITÀ E INTERPRETAZIONE


Il controllo del siero (R10) fornito nella confezione deve essere sistematicamente incluso in qualsiasi serie di immunoblot. Mostra il profilo di riferimento e garantisce (1) tecnicamente la riuscita del test (le bande devono apparire in modo evidente sulla striscia) e (2) la calibrazione precisa della posizione e dell'aspetto delle bande specifiche, consentendo l'interpretazione dei risultati delle strisce provenienti dallo stesso adesivo (con lo stesso numero di serie).

Nota Bene: il profilo del controllo positivo (R10) può variare in base al numero di lotto dei reagenti utilizzati. Le immagini corrispondenti sono disponibili sul nostro sito web **www.ldbiodiagnostics.com** come esempio.

Descrizione delle bande colorate

Un campione positivo può presentare molte bande situate tra 15 e 200k Kilo-Dalton (kDa). Ricercare la presenza di bande nella zona da 30-45 kDa per ciascuno dei campioni esaminati utilizzando gli strumenti di calibrazione sopra descritti.

Tali bande, raggruppate e ben isolate, sono caratteristiche e generalmente molto facili da individuare.

Fig. 1: Esempi di risultato positivo e negativo I profili sono forniti a titolo di esempio. Le strisce sono contrassegnate dalla lettera "K" specifica per il parametro del lotto "50016".

Interpretazione

La presenza sulla striscia di un minimo di 3 bande tra le bande specifiche 30, 31, 33, 40, 45 specifico, <u>e includendo</u> <u>la banda a 30 kDa</u>, permette di interpretare il test positivo e di concludere in presenza di anticorpi IgG anti-*T. gondii* nel campione di prova.

<u>A: esempio di sieroconversione</u>. I sieri 2 e 3, positivi per LDBIO-TOXO II IgG erano negativi al test diagnostico (di seguito indicato con: *ELISA 2 IgG* nello studio di performance).

<u>B: esempio su un follow-up neonatale</u>. I sieri 5 e 6, positivi per LDBIO-TOXO II IgG erano negativi al test diagnostico *ELISA 2 IgG*.

Nota Bene: è possibile osservare altre bande. <u>Non sono prese in considerazione nella lettura del test.</u>

Per convalidare i risultati, raffrontare sempre il profilo dell'immunoblot di ogni campione con quello del controllo positivo su R10. L'aspetto delle bande colorate è importante per l'interpretazione del test.

LIMITAZIONI D'USO

- La diagnosi di infezione non può essere definita sulla base del risultato di un singolo test.
- Per poter definire la diagnosi i risultati del siero devono essere interpretati sulla base dei dati disponibili
 (es. epidemiologici, clinici, radiologici, biologici). Non dovrebbero essere utilizzati come base per la
 diagnosi sulla base della loro sola positività.

PRESTAZIONI (VEDI BIBLIOGRAFIA)

La valutazione è stata effettuata in un laboratorio di riferimento specializzato nella diagnosi della toxoplasmosi.

Il principio della valutazione era di confrontare su 529 sieri i risultati ottenuti con la tecnica *LDBIO-TOXO II IgG*, i risultati del Dye Test di Sabin e Feldman, i risultati di due tecniche di test commercializzati, "*ELISA 1 IgG*" e "*ELISA 2 IgG*" così come i dati clinici e biologici dei pazienti.

• Soglia delle tecniche utilizzate:

	NEGATIVO	EQUIVOCO	POSITIVO
DYE TEST (UI/ml)	<2	-	≥ 2
ELISA 1 (UI/ml)	<4	4 - 8	≥ 8
ELISA 2 (UI/ml)	<6	-	≥ 6
LDBIO TOXO II IgG	0	-	≥1

• Analisi statistica dei risultati:

Ove possibile, abbiamo stabilito i valori di sensibilità e specificità. Gli intervalli di confidenza sono calcolati secondo il metodo Wilson con correzione della continuità.

La correlazione dei risultati trovati con tecniche diverse è stata valutata con il test CHI-2 di Mac Nemar su serie accoppiate.

Pazienti:

Tutte le analisi sono state effettuate su sieri conservati congelati a -20 ° C. I campioni provengono da 5 diversi gruppi di pazienti.

Gruppo I - Dye Test

Studio su 200 sieri ottenuti da test diagnostico per toxoplasmosi sulle donne in gravidanza, e testate con Dye Test. Il sottogruppo "positivo" corrisponde a 98 sieri positivi con Dye Test provenienti da donne immunizzate contro la *T. gondii*. Questo sottogruppo includeva sieri con titoli moderati di IgG da Dye Test (da 2 a 32 UI/ml) per testare la sensibilità di *LDBIO-TOXO II IgG* rispetto ad altre tecniche. Il sottogruppo "negativo" corrispondeva a 102 sieri negativi con Dye Test provenienti da donne in gravidanza non immunizzate contro la toxoplasmosi. Questi 200 sieri sono stati testati in parallelo con le tecniche LDBIO-TOXO II IgG, ELISA 1 IgG e ELISA 2 IgG.

Gruppo II - Sieroconversioni

Si tratta di una analisi retrospettiva di 17 sequenze di sieri (101 campioni) provenienti da pazienti che avevano presentato una sieroconversione da toxoplasmosi durante la gravidanza.

Ogni serie sequenziale comprende l'ultimo siero negativo e una serie da 3 a 5 sieri che mostrano la comparsa di IgM specifiche e la sintesi di IgG specifiche (ELISA 2 IgG).

Gruppo III - Follow-up bambini non infetti

Si tratta di una analisi retrospettiva di 74 campioni corrispondenti a 20 sequenze del follow-up post-natale di bambini nati da madri che hanno avuto una sieroconversione da toxoplasmosi durante la gravidanza. Ogni sequenza da 2 a 6 sieri mostra la diminuzione del titolo delle IgG materne trasmesse fino alla negativizzazione della sierologia con la tecnica ELISA 2 IgG (tra 5 e 13 mesi).

Gruppo IV - Follow-up bambini infetti

Si tratta di una analisi retrospettiva di 85 campioni provenienti da follow-up postnatali di 30 bambini con infezione congenita. Il follow-up sierologico è stato realizzato con ELISA IgG 2.

Group V - Sensibilità - specificità (infezioni virali e malaria)

Studio su 69 sieri di pazienti con infezioni virali o malaria (tabella 1). Questi campioni sono stati testati con ELISA IgG 2. (Tutti sono risultati negativi alla ricerca di IgM) Tutti i negativi così come i discordanti sono stati testati con Dye Test.

Agente infettivo (n = 69)	ELISA 2 IgG POSITIVO (n = 44)	ELISA 2 IgG NEGATIVO (n = 25)
EBV (n = 5)	0	5
VZV (n = 3)	2	1
CMV (n = 5)	2	3
HBV (n = 9)	8	1
HAV (n = 2)	0	2
HCV (n = 10)	8	2
HIV (n = 10)	6	4
PALU (n = 25)	18	7

Tabella 1: infezioni varie testate nello studio

• Risultati:

Gruppo I: Dye Test

	DYE TEST	LDBIO TOXO II IgG	ELISA 1 IgG	ELISA 2 IgG
POSITIVO	98	97	61	93
NEGATIVO	102	103	114	107
EQUIVOCO	-	-	25	-
SPECIFICITÀ	-	100%	100%	100%
SENSIBILITÀ	-	99%	85%	95%

Tabella 2: Correlazione del Dye Test con le 3 tecniche. (La tecnica ELISA 1 IgG presenta una zona equivoca)

- 4 sieri ELISA 2 IgG negativi sono risultati positivi nei test LDBIO-TOXO II IgG e DYE
- 11 sieri ELISA 1 IgG negativi sono risultati positivi nei test LDBIO-TOXO II IgG e DYE
- 25 sieri *ELISA 1 IgG* rimangono equivoci: 24 sono positivi con i test *LDBIO-TOXO II IgG* e DYE, 1 siero è negativo con i test *LDBIO-TOXO II IgG* e DYE

Gruppo II: Sieroconversioni

		ELISA 2 IgG		
		POSITIVO	NEGATIVO	
L DRIO TOVO II	POSITIVO	70	10	
LDBIO TOXO II	NEGATIVO	0	21	

Tabella 3: Correlazione LDBIO-TOXO II IgG / ELISA 2 IgG su 101 sieri di riconversione. p=0.0016

Per 8 / 17 sieroconversioni (47%) le IgG vengono depistate più precocemente da LDBIO-TOXO II IgG.

Gruppi III e IV: Follow-up neonati

		ELISA 2 IgG	
		POSITIVO	NEGATIVO
LDBIO TOVO II	POSITIVO	130	18
LDBIO TOXO II	NEGATIVO	0	11

Tabella 4: Correlazione LDBIO-TOXO II IgG / TEST 2 IgG su 159 sieri di follow-up post-natale. p<0.0001

Bambini indenni: 13 sieri corrispondente a 10/20 follow-up post-natale (50%) negativi con ELISA 2 IgG, restano positivi in LDBIO-TOXO II IgG che mette in evidenza gli anticorpi materni trasmessi mentre la tecnica ELISA 2 IgG ne rileva più.

Bambini infetti: 5 sieri corrispondenti a 3 bambini sono discordanti. Uno di essi mostra una negatività transitoria della sua sierologia con ELISA 2 IgG. Il test LDBIO TOXO-II IgG resta positivo, confermando la sua contaminazione. Per gli altri bambini, il test LDBIO TOXO II *IgG* mostra una positività più precoce rispetto a ELISA 2 IgG.

Tuttavia, non è possibile affermare una neosintesi di IgG, questo test non distingue gli anticorpi materni trasmessi dagli anticorpi neo-sintetizzati.

Gruppo V: Sensibilità e specificità (infezioni virali e malaria)

		ELIS	A 2 IgG
		POSITIVO	NEGATIVO
LDBIO TOXO II + DYE	POSITIVO	42	2
TEST	NEGATIVO	2	23

Tabella 5: Correlazione LDBIO-TOXO II IgG / DYE TEST / ELISA 2 IgG su 69 sieri di infezioni virali o malaria.

In questa popolazione, la concordanza di *LDBIO-TOXO II IgG IgG* con il Dye Test è 100%: questi risultati confermano la specificità e la sensibilità del test *LDBIO-TOXO II IgG*.

Lo studio mette in evidenza quattro risultati discordanti con la tecnologia *ELISA 2 IgG*, 2 falsi negativi (un HIV e un *P. falciparum*) e 2 falsi positivi (due *P. falciparum*) sottolineando l'importanza di una tecnica di conferma per tutti i risultati vicini alla soglia.

• Conclusione:

Gruppo I (Dye Test):

La correlazione LDBIO-TOXO II IgG / Dye Test è eccellente:

- Sensibilità = 99% [95CI 94 100%]
- Specificità = 100% [95Cl 95 100%]

Il test LDBIO-TOXO II IgG permetterebbe di confermare lo stato immunitario dei pazienti che al test diagnostico presentano un risultato equivoco o con basso titolo di anticorpi.

Gruppo II (Sieroconversioni):

La sensibilità di LDBIO-TOXO II IgG è superiore a ELISA 2 IgG (p=0.0016). LDBIO-TOXO II IgG permetterebbe di confermare una sieroconversione prima di ELISA 2 IgG.

Gruppi III e IV (Follow-up neonati):

La sensibilità di LDBIO-TOXO II IgG è superiore a ELISA 2 IgG (p<0.0001).

Al follow-up del bambino, LDBIO TOXO-II IgG potrebbe essere usato per confermare o annullare la negativizzazione della sierologia.

Tuttavia LDBIO TOXO-II IgG non permette di distinguere gli anticorpi materni trasmessi anticorpi neo-sintetizzati dal bambino.

Gruppo V (Infez. virali e malaria.)

La correlazione LDBIO-TOXO II IgG / Dye Test è eccellente. (Sensibilità 100% [95CI 90-100%], Specificità 100% [95CI 95-100%])

Questi risultati evidenziano la necessità di utilizzare un test di conferma per controllare i campioni che al test diagnostico presentano un risultato vicino alla soglia.

Le prestazioni eccellenti del kit *LDBIO TOXO-II IgG* ne giustificano l'uso a conferma dei risultati ottenuti con le tecniche di test diagnostico IgG (risultati equivoci, lievemente positivi o che pongono problemi di interpretazione).

Riproducibilità:

La riproducibilità all'interno delle serie e dei lotti è stata testata. In entrambi i casi, la correlazione esistente tra siero e siero rispetto alle specifiche bande colorate è eccellente.

Interferenze:

Sebbene nessuna particolare reazione incrociata sia stata osservata con il siero emolitico, itterico o lipidico, si raccomanda di interpretare i risultati di tali campioni con cura.

RICERCA E SOLUZIONE DI EVENTUALI PROBLEMATICHE

"Le bande colorate sono tenui e hanno poco contrasto": Alcuni sieri con bassa concentrazione di anticorpi possono dare risultati di questo tipo.

"Si vedono zone sfumate, più o meno colorate, appena diffuse": La striscia non è stata completamente immersa in uno dei reagenti e non è stata incubata correttamente su tutta la lunghezza. Possono anche comparire delle macchie nel punto di appoggio del campione, se il vassoio non è stato ben agitato dopo l'erogazione.

"Il rumore di fondo è notevole e rende la lettura molto difficoltosa": I lavaggi non sono stati sufficienti oppure l'ultima incubazione è durata troppo. Assicurarsi di seguire le giuste tecniche procedurali, rispettare i tempi di lavaggio e assicurarsi della qualità dell'acqua. Ridurre il tempo dell'ultima incubazione. Eccezionalmente, alcuni sieri reagiscono in modo anomalo. Pertanto, il risultato dell'immunoblot non è utilizzabile.

Questo rumore di fondo anomalo può interessare solamente parte della striscia, rendendo impossibile l'interpretazione di quella sola parte.

"Durante l'ultima fase di sviluppo nella soluzione compare un precipitato": il substrato potrebbe in parte precipitare (fiocchi neri) nel buffer alla fine dello sviluppo. Questo fenomeno non altera la qualità dello sviluppo che deve proseguire normalmente. L'ultimo lavaggio con acqua distillata elimina le particelle solide eventualmente presenti.

BIBLIOGRAFIA

- Franck, Jacqueline, Yves Jean-François Garin, et Henri Dumon. « LDBio-Toxo II immunoglobulin G Western blot confirmatory test for anti-toxoplasma antibody detection ». *Journal of clinical microbiology* 46, n° 7 (juillet 2008): 2334-38. doi:10.1128/JCM.00182-08.
- Jost, C, F Touafek, A Fekkar, R Courtin, M Ribeiro, D Mazier, et L Paris. « Utility of immunoblotting for early diagnosis of toxoplasmosis seroconversion in pregnant women ». *Clinical and vaccine immunology: CVI* 18, n° 11 (novembre 2011): 1908-12. doi:10.1128/CVI.05303-11.
- Khammari, Imen, Fatma Saghrouni, Sami Lakhal, Aida Bouratbine, Moncef Ben Said, et Jalel Boukadida. « A New IgG Immunoblot Kit for Diagnosis of Toxoplasmosis in Pregnant Women ». *The Korean Journal of Parasitology* 52, n° 5 (22 octobre 2014): 493-99. doi:10.3347/kjp.2014.52.5.493.
- Khammari, Imen, Fatma Saghrouni, Alia Yaacoub, Sondoss Gaied Meksi, Hinda Ach, Lamia Garma, Akila Fathallah, et Moncef Ben Saïd. « IgG Western Blot for Confirmatory Diagnosis of Equivocal Cases of Toxoplasmosis by EIA-IgG and Fluorescent Antibody Test ». *The Korean Journal of Parasitology* 51, n° 4 (août 2013): 485-88. doi:10.3347/kjp.2013.51.4.485.
- Leslé, F, F Touafek, A Fekkar, D Mazier, et L Paris. « Discrepancies between a new highly sensitive Toxoplasma gondii ELISA assay and other reagents: interest of Toxo IgG Western blot ». European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology 30, n° 10 (octobre 2011): 1207-12. doi:10.1007/s10096-011-1214-1.
- Maudry, A., G. Chene, R. Chatelain, B. Bellete, H. Patural, J. Hafid, H. Raberin, R. Tran Manh Sung, et P. Flori. « Expertise du nouveau test Access® TOXO-IgGII et comparaison avec trois autres techniques automatisées et la technique Western Blot LDBIO TOXO II IgG® ». *Immuno-analyse & Biologie Spécialisée* 24, n° 1 (février 2009): 42-49. doi:10.1016/j.immbio.2008.11.004.
- Maudry, Arnaud, Gautier Chene, Rémi Chatelain, Hugues Patural, Bahrie Bellete, Bernard Tisseur, Jamal Hafid, et al. « Bicentric evaluation of six anti-toxoplasma immunoglobulin G (IgG) automated immunoassays and comparison to the Toxo II IgG Western blot ». *Clinical and vaccine immunology: CVI* 16, n° 9 (septembre 2009): 1322-26. doi:10.1128/CVI.00128-09.
- Robert-Gangneux, F., et M.-L. Darde. « Epidemiology of and Diagnostic Strategies for Toxoplasmosis ». *Clinical Microbiology Reviews* 25, n° 2 (1 avril 2012): 264-96. doi:10.1128/CMR.05013-11.

Villard, O., B. Cimon, C. L'Ollivier, H. Fricker-Hidalgo, N. Godineau, S. Houze, L. Paris, H. Pelloux, I. Villena, et E. Candolfi. « Serological Diagnosis of Toxoplasma Gondii Infection: Recommendations from the French National Reference Center for Toxoplasmosis ». *Diagnostic Microbiology and Infectious Disease*, 18 septembre 2015. doi:10.1016/j.diagmicrobio.2015.09.009.

NOTIFICA DI AGGIORNAMENTO: leggere attentamente

DATA DI RILASCIO	VERSIONE	RIEPILOGO DELLE MODIFICHE		
09/08/2021	Vs 12	Rimozione dell'avviso di sicurezza R5 - Indirizzo e-mail di		
33, 33, 232	15 ==	contatto – EUH 032 (NaN3)		
30/11/2022	Vs13	Nuovo indirizzo		
22/12/2022	Vs14	R6 senza NaN3. Striscia identificata con la lettera.		
		Possibile utilizzo di reagenti provenienti da lotti diversi.		

24 Av. Joannes MASSET - 69009 LYON - FRANCE Tel: +33(0)4 7883 3487 - Fax: +33(0)4 7883 3430 www.ldbiodiagnostics.com - info@ldbiodiag.com